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In a Josephson phase qubit, the coherent manipulations of the computational states are achieved by modu-
lating an applied ac current, typically in the microwave range. In this work, we show that it is possible to find
optimal modulations of the bias current to achieve high-fidelity gates. We apply quantum optimal control
theory to determine the form of the pulses and study in details the case of a NOT gate. To test the efficiency
of the optimized pulses in an experimental setup, we also address the effect of possible imperfections in the
pulses shapes, the role of off-resonance elements in the Hamiltonian, and the effect of capacitive interaction
with a second qubit.
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I. INTRODUCTION

Over the past decades, together with the development of
the theory of quantum information1 there has been an in-
creasing effort to find those physical systems where quantum
information processing could be implemented. Among the
many different proposals, devices based on superconducting
Josephson junctions are promising candidates in the solid-
state realm �see the reviews in Refs. 2–5�. Josephson qubits
can be categorized into three main classes: charge, phase,
and flux qubits, depending on which dynamical variable is
most well defined and consequently which basis states are
used as computational states �0� and �1�.

Phase qubits,6–8 subject of the present investigation, in
their simplest configuration can be realized with a single
current-biased Josephson junction. For bias lower than the
critical current, the two lowest eigenstates of the system form
the computational space. The application of a current pulse,
with frequency which is in resonance with the transition fre-
quency of the two logical states—typically in the microwave
range—allows to perform all desired single bit operations.
Recent experiments9,10 have realized both single-bit and two-
bit gates in capacitive-coupled phase qubits. In the experi-
ments conducted so far, motivated by similar approach in
NMR, the amplitude of the microwave current used to per-
form the qubit manipulation has a Gaussian shape.9,11 It turns
out that Gaussian pulses perform better when their duration
time is longer.11 However, even for long pulses, the error of
NOT gate is always higher than 10−3. The importance of
achieving fast quantum gates with high fidelity raises the
question whether there are modulations other than Gaussian,
which lead to high fidelities even when the duration time of
the pulse is short. Some theoretical work has already been
done in this direction to examine the efficiency of different
modulations.11,12 In the present paper, we follow a different
approach as compared to Refs. 11 and 12 and show that by
employing the quantum optimal control theory,13–16 we can
further improve the �theoretical� bounds on the error of gate
operations.

Quantum optimal control has been already applied to op-
timize quantum manipulation of Josephson nanocircuits in
the charge limit.17–20 Here we want to test this method in the

opposite regime of phase qubit21 and see whether it is pos-
sible to find optimal modulations of microwave pulses, with
different duration times, which give very good fidelity for
single bit operations.

The paper is organized as follows. In Sec. II we will de-
scribe the model for the phase qubit and the Hamiltonian
used in the rest of the paper. In Sec. III we present the NOT
quantum gate which we have chosen to optimize. Then a
brief introduction to the quantum optimal control algorithm
which is used for this work will be given in Sec. IV. The
numerical results for a phase qubit will be presented in Sec.
V. The achieved accuracy for desired operation discussed in
Sec. V A is further tested against possible imperfections in
the pulses shape �Sec. V B�, the presence of off-resonance
elements in the Hamiltonian �Sec. V C�, and the possible
presence of the interqubit capacitive interaction in multiqubit
systems �Sec. V D�. The specific question of the leakage out
of the Hilbert space is addressed in Sec. VI, where we pro-
vide numerical results obtained for a junction with five levels
inside its potential. A summary of the results obtained and
possible perspectives of this work will be presented in the
concluding remarks in Sec. VII.

II. SINGLE-JUNCTION PHASE QUBIT

A phase qubit can be realized by a flux-biased rf super-
conducting quantum interference device �SQUID�,22 a low
inductance dc SQUID,8 or a large inductance dc SQUID.6 In
its simplest design, a phase qubit consists of a single Joseph-
son junction �Fig. 1�a�� with critical current I0 and a biasing
dc current Idc. The Hamiltonian has the form

Hdc = − EC
�2

��2 − EJ cos��� −
Idc�0

2�
� , �1�

where EC= �2e�2 /2C and EJ= I0�0 /2� are, respectively, the
charging energy and the Josephson energy of the junction
with capacitance C, �0=h /2e being the quantum of flux, and
� represents the Josephson phase across the junction. The
regime in which the superconducting phase � is the appro-
priate quantum variable is reached when EJ�EC. The poten-
tial energy of the system as a function of � has the form of
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tilted washboard with quantized energy levels inside each
well �Fig. 1�b��. When Idc� I0 there are few levels inside
each well and the two lowest states �0� and �1�, with energies
E0 and E1 and transition frequency �01= �E1−E0� /�
�5 GHz, can be used as computational states. The transi-
tion between the two lowest states is made by the use of a
microwave current I�w of frequency � which is in resonance
with the transition frequency �01. Transition to higher states
��2� , �3�. . .�, which are out of qubit manifold, are off reso-
nance due to the anharmonicity of the potential well.

To be effectively used as a two-level quantum system, the
junction is biased with a dc current slightly smaller than the
critical current Idc� I0. In this regime, the potential energy of
the system can be approximated by a cubic potential and the
Hamiltonian �1� becomes

Hdc � − EC
�2

��2 −
�0

2�
�I0 − Idc��� −

�

2
	 −

I0�0

12�
�� −

�

2
	3

.

�2�

The application of a microwave current I�w= I�t�cos��t+	�
is taken into account by adding the linear term H�w

=
�0

2� I�w� to the Hamiltonian �1�. Since the eigenstates of the
junction biased with a dc current are used as computational
states, it is appropriate to write the full Hamiltonian in the
basis of the eigenstates �n� of the system with dc bias current.
To examine the effect of microwave current, one needs to
know the elements of the superconducting phase � in this
basis.

Moving to the rotating frame, which is described by the
unitary operator

V = 
1 0 0

0 ei�t 0

0 0 e2i�t� , �3�

the Hamiltonian H̃ in the rotating frame is related to the
Hamiltonian in laboratory frame H via

H̃ = VHV† − i�V
�

�t
V†, �4�

whereas the state of the system in the rotating frame is �
̃�
=V�
�. By introducing g�t�= I�t��� /2C�01 and �mn

= 1
2
���01
m���n�, and considering only the first three levels

in the well, the Hamiltonian of the phase qubit in the rotating
frame takes the following form:

H̃ � 
 0 g�t��01e
i	 0

g�t��10e
−i	 0 g�t��12e

i	

0 g�t��21e
−i	 − ���

� . �5�

Here we have set E0=0 ,�=�01 and ����01−�12 and we
have assumed that off-resonance terms have negligible ef-
fect. As we shall see by a proper choice of 	 and microwave
current modulation g�t�, it is possible to perform single-bit
operations on the computational states �0� and �1�.

III. NOT GATE

As one can see from the 2�2 top-left block of the Hamil-
tonian �5�, the initial phase of the microwave pulse 	 defines
the axis of rotation in xy plane of the Bloch sphere for a
given state, while the pulse amplitude and duration time de-
fine the angle of rotation. For example, by setting 	=0
�	=� /2�, such block is proportional to the Pauli matrix 
x
�
y�, i.e., a rotation around the x�y� axis. In a recent
experiment,10 a � rotation around x has been implemented as
a part of a sequence of operations to create entanglement
between two phase qubits. This motivates us to set 	=0 and
focus this work on the single-qubit NOT-gate operation con-
sisting of a � rotation around the x axis.

In the typical experiment, a shaped pulse with the follow-
ing Gaussian modulation:11

g�t� =
a

tg
e−�t − �tg�2/2tg

2
�6�

is used to induce flips between states �0� and �1� and vice
versa. Here a, tg, and T=2�tg are, respectively, the ampli-
tude, characteristic width, and total width of the pulse; �
being the cutoff of the pulse in time. The actual result of the
operation can be quantified by the fidelity �

�T� �
fin��2,
where �
fin� is the desired final state and �
�T�� is the state
achieved at the end of time evolution starting from initial
state �
�t=0��= �
ini�.

For a � rotation and with a typical cut-off value �3��
�5�, the amplitude a��� /2 yields a pretty high fidelity
of rotation. More precisely, Fig. 2 shows the error
1− �

�T� �
fin��2 for a NOT-gate operation on an arbitrary
superposition �
ini�=b�0�+c�1�, which would result in the
state �
fin�=b�1�+c�0�, using a Gaussian pulse with cutoff
�=3, amplitude a=1.25, and duration time T. The leakage
outside the qubit manifold defined as �

�T� �2��2 is also
shown in Fig. 3. It is worthwhile noting that although the
leakage, for long enough pulses, can be of the order of 10−7,
the error in the NOT-gate operation is always higher than
10−3 �see Ref. 23�.

V Idc Iµw

C I0 R

δ

U(δ)

(a) (b)

0
1

2
∆Uω01

FIG. 1. �a� Schematic drawing of a single-junction phase qubit
with capacitance C, resistance R, and critical current I0 which is
biased by a dc current Idc. A microwave pulse I�w= I�t�cos��t+	�,
with frequency �=�01, is applied to make transitions between the
two lowest-energy levels of the system �0� and �1�. �b� By neglect-
ing the resistive branch, the potential energy of the system U, as a
function of the Josephson phase across the junction �, has the form
of a tilted washboard potential. This potential is defined by the
height of the well �U and the frequency of the classical oscillations
in the bottom of the well.
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IV. QUANTUM OPTIMAL CONTROL

As we mentioned in Sec. I, in this work we use the quan-
tum optimal control theory in order to obtain microwave
current modulations which give rise to a high-fidelity NOT-
gate operation for a phase qubit. In this section, we briefly
review the optimal control algorithm which we have em-
ployed to obtain optimized modulations.

In general, quantum optimal control algorithms13–15 are
designed to lead a quantum system with state �
�t�� from an
initial state �
�0��= �
ini� to a target final state �
fin� at time T
by minimizing a cost functional, which is a measure of inac-
curacy of reaching the desired final state. If �
�T�� denotes
the state achieved at time T, one can consider two different
cost functionals:

�i� e1 = 1 − �

�T��
fin��2

By minimizing this cost functional, although the population
of the desired state �
fin� will be maximized, the overall
phase of this state is not forced to be preserved.

�ii� e2 = ��
�T�� − �
fin��2

Minimization of this second cost functional, in addition to
maximizing the population of the desired state, preserves its
overall phase.

In optimal control theory, the minimization of the cost
functional is done by updating the Hamiltonian of the system
via some control parameters, in an iterative procedure until
the desired value of the cost functional is reached. Any spe-
cific algorithm which is guaranteed to give improvement at
each iteration24 is called immediate feedback control and can
be briefly described as follows. Assume that the Hamiltonian
of the system depends on a set of parameters �uj�t�� which
are controllable. By using a proper initial guess �uj

�0��t�� for
control parameters, first the state of the system �
�t�� is
evolved in time with the initial condition �
�0��= �
ini� giving
rise to �
�T�� after time T. At this point the iterative algo-
rithm starts, aiming at decreasing the cost functional by add-
ing a correction to control the parameters in each step. In the
nth step of this iterative algorithm, �i� an auxiliary state ���t��
is evolved backward in time starting from ���T�� reaching
���0��. In the case of minimizing e1, ���T��
= �
fin�

fin �
�T�� and for minimizing e2, ���T��=2��
�T��
− �
fin��. �ii� The states ���0�� and �
�0�� are evolved forward
in time, respectively, with control parameters �uj

�n��t�� and
�uj

�n+1��t��. Here,

uj
�n+1��t� = uj

�n��t� +
2

��t�
I�
��t��

�H

�uj�t�
�
�t��� �7�

are updated control parameters. ��t� is a weight function
used to fix initial and final conditions on the control param-
eters in order to avoid major changes at the beginning and at
the end of time evolution. These two steps are repeated until
the desired value of e1 or e2 is obtained.

In order to implement the optimization procedure to a
NOT gate for any arbitrary superposition of computational
states, one must be able to flip �0� and �1� at the same time
�i.e., with same pulse� making sure that the phase relation
between them is preserved. This is guaranteed by using the
following definition of fidelity:

F � �

0�T��1� + 

1�T��0�
2

�2

, �8�

where �
0�T�� and �
1�T�� are the final states achieved at
time T after applying the same pulse on the initial states �0�
and �1�. The minimization of the cost functional e1, for flip-
ping at the same time the states �0� and �1�, does not neces-
sarily lead to maximization of the fidelity �8� due to possible
changes in the phase relation between them. However if e2 is
minimized, the maximal fidelity is also guaranteed. There-
fore in order to obtain a high-fidelity NOT gate, it seems
more natural to minimize e2 instead of e1. However, in the
following we will show that although in the ideal case opti-
mized pulses obtained from minimizing e2 result in much
higher fidelity, when more realistic cases are considered op-
timized pulses from minimizing e1 lead to higher fidelities,
specially for very short pulses. In this work we often use the
error E=1−F instead of fidelity.

FIG. 2. �Color online� The error of a NOT-gate operation on an
arbitrary superposition b�0�+c�1�, after applying a Gaussian pulse
with amplitude a=1.25 and cutoff �=3, as a function of the dura-
tion time T. b�1�+c�0� is the expected final state and 
�T� is the
final state achieved after applying the Gaussian pulse.

FIG. 3. �Color online� The leakage outside the qubit manifold
for a NOT-gate operation on an arbitrary superposition of states �0�
and �1�, after applying a Gaussian pulse with amplitude a=1.25 and
cutoff �=3, as a function of the duration time T.
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V. NUMERICAL RESULTS

In this section, we present the numerical results to show
that the quantum optimal control theory allows to optimize
the modulation of microwave pulses in order to implement a
high-fidelity NOT gate. The optimization is done in the ro-
tating frame and the Hamiltonian �5� is used for the time
evolution, while �ij are calculated by means of perturbation
theory.

A. Optimal NOT gate

By employing the quantum optimal control algorithm de-
scribed in the Sec. IV and using the modulation of the mi-
crowave pulse g�t� as the control parameter, we start from
Gaussian pulses �6� of given duration time T as the initial
guess and optimize the NOT-gate operation. We will show
the results obtained from minimizing both e1 and e2 and refer
to corresponding errors by E1 and E2 and corresponding op-
timized pulses by g1 and g2. The optimization has been
stopped when either the cost functionals reached the value
10−12 or 5000 iterations are done.

Figure 4 shows the error E as a function of duration time
of the pulse T for the Gaussian pulses used as initial guess
�circles� and for the optimized pulses �unfilled triangles and
squares�. For most of the points, the convergence is reached
in much less than 5000 iterations. However for pulses with
T�2 2�

�� , 5000 iterations have been completed. As we ex-
pected, minimizing e2 results in the high-fidelity NOT gate
with E�10−12 for all T�2 2�

�� �4 ns; while for very short
pulses it seems that with same number of iterations, mini-
mizing e1 leads to better results.

In order to understand the reason for the oscillating be-
havior of E1 as a function of T, we plot the average value of

e1 for �0�→ �1� and �1�→ �0� transitions at the end of optimi-
zation �top panel of Fig. 5� which shows that the final value
of e1 for both of these transitions is of the order of 10−12. As
we explained in Sec. IV, e1 is insensitive to the phase of the
final state and it turns out that while a given optimized pulse
applied to the initial state �0� leads to the final state ei�0�1�
then the same pulse might transform the initial state �1� into
ei�1�0�, i.e., there is a phase difference between the two final
states �diff��1−�0. The bottom panel of Fig. 5 shows this
phase difference for optimized pulses with given duration
time T which increases the error of NOT-gate E1 to what has
been shown in Fig. 4.

Although this phase difference causes a major increase in
the error while working with superpositions, the error E1 is at
least 1 order of magnitude smaller than those from Gaussian
pulses �Fig. 4�. Moreover the final phase difference between
�0� and �1� can be compensated by a following phase-shift
gate. In Fig. 4 the results after applying a 0.01� �which is
approximately the average of �diff in time� phase shift are
also shown �filled triangles� which demonstrate a significant
decrease of E1.

B. Imperfections in the pulse shapes

In this section we study the Fourier transform of the op-
timized pulses, in order to see how practically they are real-
izable in the laboratory and to examine the effect of high-

FIG. 4. �Color online� Error for a NOT-gate operation applied to
any arbitrary superposition of states �0� and �1� made by pulses with
Gaussian modulation �circles� and optimized modulation obtained
from minimizing e1 �unfilled triangles� and e2 �squares� in a three-
level system. Gaussian pulses have amplitude a=1.25 and cutoff in
time �=3. Optimized pulses are obtained after at most 5000 itera-
tions and using Gaussian pulses as initial guess. Filled triangles are
obtained by applying a 0.01� phase shift after applying the opti-
mized pulses obtained from minimizing e1.

FIG. 5. �Color online� Top panel: the averaged value of e1 for
�0�↔ �1� transitions after applying pulses with Gaussian modulation
�circles� and optimized modulation �triangles�. Optimized pulses are
obtained by minimizing e1. Vertical axis is in logarithmic scale and
T is the total width of the pulse. Bottom panel: the phase difference
between final �0� and �1� states �after applying the optimized pulses�
in units of �. This final phase difference increases the error of
NOT-gate E1 to what has been shown in Fig. 4. In principle, a
proper phase-shift gate can compensate this phase difference and
decrease the error to 10−12.
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frequency components. Two examples of the final optimized
pulses �dashed lines� are shown in Fig. 6: both with the du-
ration time T=2 2�

�� �4 ns. Optimized g1 �top panel� and g2
�bottom panel� are the results of minimizing, respectively, e1
and e2. The corresponding Gaussian pulse is also shown in
both panels. g1 is guaranteed to decrease the error of NOT-
gate 2 orders of magnitude with respect to the Gaussian
pulse, while g2 would reduce the error up to 10 orders of
magnitude.

Figure 7 shows the Fourier transform of the two opti-
mized pulses shown in Fig. 6. To filter out the high-
frequency components of the optimized pulses, we set a cut-
off frequency �cut for Fourier components and apply the
truncated pulses again and obtain the error. Figure 8 shows
the error for a NOT gate for pulses with different duration
times as functions of �cut. �01 /2� is approximately 5 GHz
and �� is typically 10% of �01. In our calculation ��
=0.1�01, which means that �� /2��500 MHz.

In the case of E1, the top panel of Fig. 8 makes it clear
that all important harmonics have frequencies smaller than
5��. Note that the number of harmonics included within the
cutoff is equal to T�cut /2�; so that, for T=N�2� /���, such
number is equal to N times the ratio �cut /��. As a result it
seems that for all values of T considered, about 20 harmonics
should be sufficient to reach the smallest value of E1. E2,

though, seems to be more sensitive to high-frequency com-
ponents but still about 4 orders of magnitude smaller than E1
under the cutoff �cut=10��.

C. Effect of off-resonance terms

As we mentioned previously, we have assumed that off-
resonance elements of the Hamiltonian �4� in the rotating
frame are negligible and we have used Hamiltonian �5� for
calculating the evolution. In this section, we check this as-
sumption by addressing the effect of off-resonance elements
by evolving the complete Hamiltonian �4� using the opti-
mized pulses obtained using Hamiltonian �5�. Top panel of
Fig. 9 shows the error for a NOT-gate operation implemented
by Gaussian �circles� and optimized pulses from minimizing
e1 �triangles� and e2 �squares�. For T�2 2�

�� , the optimized
pulses yield a much higher error, with respect to the case
when off-resonance terms are neglected, still showing an im-
provement of 2 orders of magnitude if compared to Gaussian
pulses. Bottom panel of Fig. 9 shows the absolute value of
the error difference �E obtained by subtracting the error
without off-resonance term from the error with off-resonance
terms. These figures make it clear that while for Gaussian
pulses off-resonance terms can be neglected, for optimized
pulses—specially those obtained from minimizing e2—they
are very important. Note that contrary to the ideal case where
E2 was about 8 orders of magnitude smaller than E1, under
the effect of off-resonance terms, E2 seems to be larger than
E1 specially for very short pulses with T�2 2�

�� . This means
that the assumption of ignoring these terms is more accurate
when e1 is minimized. The simpler shape of the optimized
pulses obtained from minimization of e1 could be a reason
for that.

FIG. 6. �Color online� Examples of final optimized modulation
of pulses �dashed lines� and the corresponding pulse with Gaussian
modulation �solid lines� used as initial guess in optimization pro-
cess with duration time T=2 2�

�� obtained from minimizing e1 �top
panel� and e2 �bottom panel�.

FIG. 7. �Color online� Fourier transform g��� of two optimized
pulses shown in Fig. 6 �dashed lines�. g1��� minimizes e1 and g2���
minimizes e2. �� is chosen to be 10% of �01 and �01 /2� is ap-
proximately 5 GHz.

OPTIMIZED SINGLE-QUBIT GATES FOR JOSEPHSON… PHYSICAL REVIEW B 79, 064524 �2009�

064524-5



D. Effect of capacitive interaction

So far we have considered a single qubit with three en-
ergy levels and obtained the modulation of the microwave
pulses in order to optimize the NOT-gate operation for the
two lowest-energy states �0� and �1�. It is now interesting to
consider the setup10 containing two qubits interacting via a
capacitor. The question that we want to address is what hap-
pens if these optimized pulses are applied on the first qubit
while the interaction with the second qubit is present.

The interaction Hamiltonian of a circuit with two identical
phase qubits has the following form:

Hint = −
EC

2

ECx

�� �2

��1
2 +

�2

��2
2	 + 2�i

�

��1
� i

�

��2
	� , �9�

where �1 and �2 are Josephson phases across junctions 1 and
2 and Cx is the capacitance of the interaction capacitor. Note
that the term with second derivative in Eq. �9� can be in-
cluded in the Hamiltonians of the uncoupled qubits �1� by
replacing the charging energy EC with an effective one
ECeff

= �2e�2 / �2Ceff�, where Ceff�C2 /C� and C�=C+Cx. The
Hamiltonian can again be written in the basis of the eigen-
states of the uncoupled qubits, and the strength of the inter-
action Hamiltonian reduces to �Cx /C�����01�. We move to
the rotating frame described by the unitary operator

V = 
1 0 0

0 ei�t 0

0 0 e2i�t� � 
1 0 0

0 ei�t 0

0 0 e2i�t� �10�

and neglect the off-resonance elements of the resulting
Hamiltonian. By applying microwave pulse on the first qubit,
our aim is to perform a NOT-gate operation on such qubit
�namely, 
x1 � 12�. Since Cx is typically of few femtofarads
and C is of the order of picofarad �Refs. 9 and 10�, we find
Cx /C��2.3�10−3 which leads to an interaction strength
�Cx /C���01�10 MHz. Figure 10 shows the error as a func-
tion of the time width of the pulse T for both Gaussian
�circles� and optimized pulses �triangles and squares�. Al-
though the optimized pulses are obtained for a single-qubit
system, they still result in smaller error at least for short
pulses. These results show the importance of the presence of
the capacitive interaction even though the strength of the
interaction is small. As it is clear from Fig. 10 for pulses
longer than approximately 8 ns �T=4 2�

�� �, the interaction be-
comes more effective and the error for Gaussian and opti-
mized pulses is very close. Moreover, longer pulses lead to a
higher value of error contrary to what happens in the case of
a single qubit. In this case also for very short pulses �T
�1.752�

�� �, E1 is smaller than E2 and for T�2 2�
�� they are of

the same order; although in the ideal case E1 was 8 orders of
magnitude larger than E2.

FIG. 8. �Color online� Error E for a NOT gate with optimized
pulses obtained by minimizing e1 �top panel� and e2 �bottom panel�
as a function of the cutoff frequency �cut. Integer values of
T�cut /2� correspond to the number of Fourier components in-
cluded. �� /2� is approximately 500 MHz.

FIG. 9. �Color online� Top panel: the error E for a NOT gate
made by applying microwave pulses with Gaussian modulation
�circles� and optimized modulation �triangles and squares� when
off-resonance terms are kept. Note that optimized pulses are ob-
tained by excluding off-resonance elements. Bottom panel: the ab-
solute value of error difference �E obtained by subtracting the
curves in the top panel from those in Fig. 4. T is the total time width
of the pulses.
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The bottom panel of Fig. 10 shows the absolute value of
error difference �E, which is obtained by subtracting the er-
ror of ideal case from the error in the presence of interaction.
�E is almost the same in all three cases.

VI. LEAKAGE

As explained in Sec. II, the two lowest-energy levels of a
current-biased Josephson junction can be used as �0� and �1�
states of a phase qubit. Although it would be desirable to
have only two levels inside the potential well of Fig. 1, this
is not the case in experimental setups. So far we have in-
cluded the leakage by considering only an additional third
level and showed that it is possible to optimize the pulses in
order to gain high fidelity for a NOT gate for a single qubit.
In typical experiments, the number of energy levels inside
the well varies between three and five. In order to have a
more complete understanding of the leakage, in this section
we show some results obtained for a five-level system. Since
adding more levels to the system decreases the inhomogene-
ity of the level spacing, we choose ��=0.05�01.

Figure 11 shows the error E for a NOT gate implemented
by optimized and Gaussian pulses, which are used as initial
guess, for different duration times T. Similar to the case of
three-level system, with the same number of iterations, mini-

mization of e1 leads to better results for short pulses; while
for longer duration times of pulses minimizing e2 results in
the error of NOT-gate E2�10−12. In the case of minimizing
e1, at least 1 order-of-magnitude improvement is achieved
for long pulses, although the improvement obtained for
pulses with shorter-time width is the best. By looking at the
average value of e1 for transitions between the states �0� and
�1� �top panel of Fig. 12� and the final phase difference be-
tween them �bottom panel of Fig. 12�, one realizes that—as
it was observed in three-level system—considerable amount
of E1 is due to the final phase difference �diff. For instance,
the pulse with T=2 2�

�� results in a phase difference approxi-
mately equal to zero and therefore E1 for this pulse is of the
order of 10−8. A proper phase shift applied after the NOT-
gate operation will compensate the phase difference between
the final �0� and �1� states and consequently attaining a very
high fidelity.

FIG. 10. �Color online� Top panel: error E for a NOT gate on the
first qubit implemented by applying Gaussian �circles� and opti-
mized �triangles and squares� pulses on the first qubit of a two-qubit
system in the presence of capacitive interaction. Gaussian pulses
have amplitude a=1.25 and cutoff in time �=3 and are used as
initial guess in the optimization procedure. Optimized pulses are
obtained from the single-qubit setup. The strength of the interaction
is Cx /C�=2.3�10−3. Bottom panel: the absolute value of error
difference �E obtained by subtracting the curves in the top panel
from those in Fig. 4.

FIG. 11. �Color online� The error E of NOT gate made by ap-
plying Gaussian �circles� and optimized �triangles and squares�
pulses as function of duration time of the pulse T. Gaussian pulses
have amplitude a=1.25 and cutoff in time �=3 and are used as
initial guess in optimization. Optimized pulses are obtained after at
most 15 000 iterations. Physical system contains five energy states
and �� is assumed to be 0.05�01.

FIG. 12. �Color online� Top panel: the averaged value of e1 for
�0�↔ �1� transitions after applying the Gaussian pulses �circles� and
optimized pulses �triangles� obtained from minimizing e1. Vertical
axis is in logarithmic scale. Bottom panel: the phase difference
between final �0� and �1� states in units of �.
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Two examples of pulses with T=2 2�
�� are shown in Fig.

13. g1 is obtained from minimizing e1 and gives rise to E1
�10−8, while g2 is supposed to minimize e2 with E2�10−7.
It seems that, compared to three-level system, higher fre-
quencies and amplitudes are needed to reach high fidelity of
NOT gate. In three-level system, the iterative optimization
algorithm is applied at most 5000 times to reach such fideli-
ties; while with five levels 15000 iterations were needed to
obtain the results shown in Figs. 11 and 12. The leakage out
of the qubit manifold would be the reason for this.

VII. CONCLUSIONS

In this paper, we have shown that it is possible to optimize
single-qubit gates for Josephson phase qubits by employing

quantum optimal control theory. We have considered the re-
alistic situation in which, in addition to the two computa-
tional basis states �0� and �1�, higher-energy states are
present, which may lead to leakage. Typically microwave
pulses with Gaussian modulation are used to induce transi-
tion between states �0� and �1�, yielding a quite high fidelity
for long pulse durations. For the sake of definiteness, here
we have focused on the NOT-gate single-qubit operation and
searched for modulations of microwave pulses which opti-
mize such operation, especially for short-duration pulses.
The numerical results obtained for a three-level system and
neglecting off-resonance terms demonstrate up to 10 orders
of magnitude improvement in fidelity of a NOT-gate opera-
tion with respect to those obtained through Gaussian modu-
lations. To test the effect of possible imperfections in the
pulses shape, we have studied the behavior of the fidelity as
a function of the bandwidth of the pulse generator and
showed that frequencies not bigger than 2 GHz are needed to
gain up to 4 orders of magnitude improvement. Moreover,
we have shown that the off-resonance elements of the Hamil-
tonian, which are usually neglected, can be important for
optimized pulses—especially for short pulse duration
times—due to the very high fidelity reached. We have also
addressed the effect of the presence of a capacitively coupled
second qubit and showed that, even though the optimized
pulses are obtained for a single qubit, they still lead to a high
fidelity for a NOT gate �up to 2 orders of magnitude im-
provement� especially for very short pulses. Finally, we were
able to obtain optimized pulses for a system with five energy
levels in which the leakage outside qubit manifold is more
severe.

In conclusion, the two-interacting-qubit system deserves
for sure further attention. On one hand, in order to improve
the fidelity of a single-qubit operation, in the presence of
capacitive coupling, it seems that a way to switch the inter-
action on and off should be found even for optimized pulses
of an isolate qubit. On the other hand, obtaining optimized
pulses while including the interaction, would be a potential
theoretical work to be done.
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